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The accuracy of vortex methods employing smooth vortex particles/blobs is de-
termined by the blob size, which can be viewed as a mollifier of the vorticity field.
For computational efficiency, this core size needs to be spatially variable as particles
are used to discretize different parts of the flow field, such as the boundary layer
and the wake in bluff body flows. We derive here a consistent approximation for the
viscous Navier—Stokes equations using variable size vortex particles. This derivation
is based on the implementation of mappings that allow the consistent formulation of
the diffusion and convection operators of the Navier—Stokes equations in the context
of vortex methods. Several local mappings can be combined giving the capability of
“mesh-embedding” to vortex methods. It is shown that the proposed variable method
offers a significant improvement on the computational efficiency of constant core
size methods while maintaining the adaptive character of the method. The method is
ideally suited to flows such as wakes and shear layers and the validity of the approach
is illustrated by showing results from cylinder flows and wall-vortex interactions. Us-
ing this scheme, previously unattainable simulations of cylinders undergoing rotary
oscillations at high Reynolds numbers reveal an interesting mechanism for drastic
drag reduction. @ 2000 Academic Press
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1. INTRODUCTION

Vortex methods are based on the particle discretization of the Lagrangian form of
vorticity-velocity formulation of the Navier—Stokes equations. The computational eleme
are vorticity carrying particles that are being convected with the velocity of the flow fiel
The vorticity field can always be reconstructed by a linear superposition of the indiv
ual vorticity fields carried by the particles. In smooth vortex methods—as opposed
point vortex methods—each particle is associated with a smooth core functiwor-or
tex blobwhich is in particular used in the velocity evaluation by a mollified Biot—Sava
law [1].
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The Lagrangian form of vortex methods avoids the explicit discretization of the conveci
term in the Navier—Stokes equations and the associated stability constraints. The pa
positions are modified according to the local flow map, making the method self-adapt
This adaptation comes at the expense of the regularity of the particle distribution as part
move in order to adapt to the gradients of the flow field. However, the regularity of the part
distribution is important for the convergence of the method. This has been demonstr
by both theoretical results and detailed numerical studies [12]. Particle regularity is |
guaranteed by remeshing the particle locations on a regular grid [4] and precludes the
of the random walk method for the simulation of diffusion in direct numerical simulatior
We will here consider vortex methods where particle circulations are redistributed am
particles to account for diffusion, through the so-called particle strength exchange (P
algorithm [4, 6].

Besides particle regularity, another critical factor for the accuracy in the computatior
both particle diffusion and velocities is an overlaping condition which imposes that the <
of the core surrounding each particle exceeds the inter-particle spacing. This overlap
requirement imposes a servere restriction on the overall adaptivity of vortex methods.
example, in bluff body flows the boundary of the body is the source of vorticity in the flc
and it is important to discretize adequately the boundary layer region near the surface c
body. This requirement dictates the size of the particle cores. However, for constant size
tex blobs, as the vorticity gradients decay on the wake, it is clear that the flow is discret
using unnecessarily large numbers of computational elements. This deficiency of con:
size vortex methods clearly detracts from the adaptive character of the method and it
pability to accurately resolve vorticity gradients while remaining computationally efficiel

This issue has been addressed extensively in the context of grid based methods, in
where the vorticity gradients are well defined, such as in bluff body flows. The adaptivity
grid based methods is obtained by spatially adjusting the grid size and/or using techni
such as B-splines and embedded meshes [13]. In vortex methods Hou [10] first introd
a variable size vortex method for the Euler equations and he demonstrated its converg
However, the straightforward implementation of Hou’s method in the context of viscc
vortex methods [11] is not possible due to the moment properties required by the scher
particle strength exchange for the simulation of diffusion. Instead, as shown in this pa
variable vortex blobs can be incorporated by introducing a mapping between the spat
varying physical domain and a uniform mapped domain. The formulation of the diffusi
operator is further carried out in the mapped domain where the mapped coordinates r
on aregular equispaced grid and discretized on particles through generalized PSE form
In this context variable size vortex methods are related to LES formulations with spati
varying filters as introduced by Ghosal and Moin [7].

The mappings required in the formulation of variable size vortex methods can be glc
or local mappings. In a domain decomposition approach, the use of local mappings is e
extended to combinations of several local mappings, thus providing a vortex method
mesh-embedding capabilities.

The paper is organized as follows. In Section 2 we outline the governing Navier—Sta
equations and their discretization using vortex methods. In Section 3 we present the fo
lation for variable size vortex methods and in Section 4 we discuss implementation iss
such as the use of the method along with fast N-body solvers. In Section 5 we present re
from the application of the method in two dimensions and we compare its performance
vortex methods employing constant size vortex blobs.
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2. GOVERNING EQUATIONS AND VORTEX METHODS

The evolution of the vorticity field in a three-dimensional, incompressible, viscous flow
described by the Navier—Stokes equations. These equations may be expressed in a vel
vorticity (u, w =V x u) formulation as

az)_“:_i_(u.v)w_(w.V)u—vszo. @

The velocity field is obtained by solving the Poisson equation
AU = -V x w. (2)

In two dimensions, the vorticity is orthogonal to the flow plane, so that the stretching te
disappears and the vorticity equation reduces to a convection-diffusion equation.
The Navier—Stokes equations can be expressed in a Lagrangian formulation as

dxp
T u(Xp, t) 3)
% = [VUXp. D] wp + VAW(Xp). (4)

wherexp, wp denote the locations and the vorticity carried by the fluid elements. The
two equations can be solved by simultaneously updating the locations and strengtt
the vorticity carrying fluid elements. Alternatively, they may be solved in sub-steps
employing a viscous splitting algorithm where in the first sub-step the fluid elements
advanced with the local flow velocity and their circulations are updated to take into accc
the vorticity stretching. Diffusion acts at these new locations to modify the vorticity fie
of the flow.

\Vortex methods are based on this Lagrangian description and use particles as vort
carrying computational elements. The method amounts to tracking these particles and
circulations. This requires one to compute velocities and velocity gradients at part
locations. In this paper, we will essentially focus on the totally grid free implementation
vortex methods, where velocity calculations are based on the Biot—Savart law

u:/K(x—y)xwdy+Uo(x,t). (5)

In the above equatiody(x, t) is the solution of the homogenous Eg. (2), and

—+27/|z>  intwo dimensions
K@=
%z/|z|3 in three dimensions.

This formula is differentiated to obtain velocity gradients. In point vortex methods tl
approximation of the vorticity field is

w(X) = vawpa(x—xp), (6)
p

wherexp, vp, andwp respectively represent the locations, volumes, and vorticities of tl
particles. In vortex blob methods, particles are assigned a finite core $iwedt is used
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to compute the velocity field. More precisely, the core shape of the particles is obtai
through a cut-off functiory satisfying [ ¢(x) dx =1 and the vortex-blob approximation is
given by

we(X) =Y vpwple (X — Xp) (7
p

L0 = e~ <X>
&

(here and in the sequdlis the number of space dimensions). The regularization implie
in this formula is motivated by the fact that the particle representation (6) would le
to singular evaluations of the velocity in (5). For a thorough discussion of the point &
smooth vortex methods and their numerical analysis we refer to [4] and the referer
therein.

The numerical implementation of (3)—(4) is completed by discretizing the contrik
tion of the diffusion. Essentially two classes of techniques are presently available for
part of the equations. One is the random walk method of Chorin [1]. The other class con
of resampling schemes, originating with the scheme of Cottet and Mas-Gallic [2]. In t
paper we will be concerned with the particle strength exchange method [6]. This resamy
scheme is based on integral approximations of the diffusion operator that can be writte
the general form

with

Aw g2 / e (IX — yD[w(X) — w(y)] dy, (8)

ne(X) = 8‘dn<§>
&

andn is a spherically symmetric function satisfying the normalization condition

where

/ X2 (x) dx = 2 (9)

fori =1, ..., d. High order approximations can be obtained through the choice of suita
functionsn. In practice, one chooses a function that has compact support or is deca:
rapidly at infinity. The discretization of the integral in the right-hand side of (8) thus on
involves a few particles. This scheme is rather straightforward to implement and a
a marginal numerical cost to the velocity evaluations. It has been shown to yield
resolution particle schemes for viscous flows [11]. Finally it can be easily extendec
handle spatially varying diffusion coefficients, a flexibility which will prove useful in the
sequel. The vortex blob method defined so far can be summarized by the following sy:s
of ordinary differential equations for the particle locations and vorticities

dx N

at = Zqzl vKe (Xp = Xq) X wg + Ug(Xp, D (10)
dw N .
d_tp: E g VK (Xp — Xq) X wq wp+vs‘2§ vglwq —wp]ne(IXp—XgD.  (11)

a=1 a=1
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These equations must be supplemented by initial conditions which depend on how part
are initialized.

3. VORTEX METHODS WITH VARIABLE BLOB SIZES

The parameterused in the definition of the blobs as well as in the diffusion approximatic
defines the minimal scales that can be resolved by the method. It plays the role of the
size in grid based Eulerian methods. As such it is natural to allow this parameter to \
with time and space. Here we are concerned with the case of a spatially variable blob
and we first consider its implication in velocity calculations.

3.1. Variable Core Size for the Biot—Savart Integral

A variable blob method would consist of defining a functigr) <« 1 and modifying (7)
into

w? x) = Z pLe(xy) (X - XT)) (12)
p

This leads to the velocity formula

u(x) = ZapKE(xp) (x —xb). (13)
P

The convergence of the method based on this formulas for the particle velocity evaluat
has been proved for two-dimensional flows by T. Hou [10], under the assumption that t
exists a smooth functiof such that

e(X) = ef (X) with0<C < f(x) < C/, (14)

for some constants, C’. The numerical analysis of particle methods generally distinguish
the contribution to the discretization error resulting, on the one hand, from the samplin
the continuous vorticity onto a discrete set of particles, and, on the other hand, from
regularization involved in the velocity evaluations.

Let us only outline here the error analysis for the regularization error produced o
smooth vorticity fieldp. This regularization error can be expressed as

E= /qb(y)és(y)(x —y)dy — ¢ (x).
For simplicity, let us assume that the cut-gflhas a compact support, of size unity. As

it is classical in particle methods, we assume that this cut-off has ordethe sense
that

/;(x) dx=1 (15)
/xi;(x)dx=o iflij<r—1 (16)

/IXIrIE(X)IdX < 00, (17)
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wherei = (i1, i) is a multi-index,|i| =i1 + iz, andx' = xillxizz. We first set
_X-y
e(y)
We can write
0z 1 { of ]
T = — 5ij — &Zj —
ayj  ey) aYj

and a Taylor expansion df aroundx yields

07 1

=— + O(e").
ay;  ey) )

r
8ij + Z 8kaak
k=1

This first shows that, fos small enoughy — z defines a one-to-one smooth mapping an
that the Jacobian of this mapping can be evaluated as

;
1+ Z 8kabk

k=1

e(y)? + O(e").

As aresult
/Ce(y)(x —y)dy =1+ 0(")
and we can rewrit& as
E = [ 65~ 9002 =) dy + O,

If ¢ is of classC', its Taylor expansion gives

E= " calldli [ 2c@e0) ! dz+ O,

laf<r

Upon expandingf again around, one finally obtains

E= Y da||¢||r,ooe""/z"c(z>dz+ O(eN.

1<|e=r—1

and, in view of the conditions (16) and (1B,= O(s").
It follows that, for inviscid flows, the vortex method with smoothly varying blob size he
the same convergence properties as for uniform blobs.

3.2. Diffusion with Variable Core Sizes

We are now concerned with the implementation of a PSE formula similar to (8) w
variable values of.
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Letusfirstobserve that (8) can be derived starting from a straightforward Taylor expan:
of w aroundx,

2

0w
() = W00+ (Y =X) - Ve + 3% = W) = Yj)g =+
ij o

By the symmetry properties af, the first order terms and the cross terms involving th
second order derivates of drop out in the right-hand side of (8). The normalizatior
condition (9) then leads to the desired approximation. If we now follow the numeric
analysis outlined in Subsection 3.1, we notice that a straightforward use of a variable v
of ¢ in the right-hand side of (8) would bring nonvanishing terms from a combination
first order terms in the Taylor expansions®énde. To avoid this inconsistency, we need to
assume a mapping from the physical coordinates, with variable-size blobs, to a coordi
system where blobs have a uniform size.

For simplicity we present first the analysis for the one-dimensional case and then
generalize it for arbitrary mappings. Particular mapping examples are described in Secti

3.2.1. The 1-D case.We will denote byx, y locations in the physical space, with
variable blob size, and by, § locations in the mapped coordinates, where the grid size
uniform. We will assume that the mapping is given by the formulas

x = f(X), =gx),  wX) =w(X).
Writing derivatives in the mapped coordinates yields

P o2 o2
dx2 dx dx |’

whereh(X) = g'(x). Next, we use the following integral approximation, the proof of whicl
relies on Taylor expansions at order 2 similar to those in [4] (proof of Eq. 8),

d L do 3 h) +h@®) . . -V
ax {h(x)df(} ~e /72 [@(X) — (Y)]U< >dy

Inthe above formula, the kerngkatisfies the moment properties (9) arislaconstanblob
size. This leads to the following PSE scheme for the diffusion equation in one dimensi

Boo — vtz 3 0" (B R) g
q

dt 2

where thevy denote the volumes of the mapped particles. In this formula, vorticity
exchanged in a range of orderaroundX, in the mapped coordinate. In the physical
coordinates this range becom#dgX ;) which corresponds to the desired variable blob size
Notice also that the volumes of the physical and mapped particles are related throug!
Jacobian of the mapping

which establishes that the scheme in Eq. (18) is indeed conservative.
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3.2.2. General case.We now derive general formulas for PSE schemes using varial
blob size. We assume that the computational dorf@aivhere we wish to use variable blob
size, is mapped through a mapping denoted-ltp a domainQ with uniform blobs. We
will use the notations

X = F(X); u(x) = G(X).

We consider the inverse mappig= F~* and set, for, j in[1, d]whered is the dimension,

8G|
8xJ

With these notations, we may write
au
AxUu = a; 19
w=3a (ak.axk) (19)

If J= det[a;] denotes the Jacobian determinant of the mappinge observe that, for
i €[1,d],

MQ

iJ) = (20)

J_18xJ

This results from the fact that i is any vector-valued test function defined @nand
vanishing on its boundary, we have

_ i 1 o
0= /d dx = ajj—J
Jdmoan=3 [
By the divergence theorem, this implies

5
0=Zj:/@a$<,-

which proves our claim. Hence we can rewrite (19) as

i J7Hi dx

Ayu =1 21
xt = Z aXJ ( an) (1)
with by = J71y aiaj;, or, equivalently,

Axu = Jdivg[ BVid], (22)

whereB is the matrix with entries; .
It now remains to derive integral approximations in the mapped coordinates for
differential operator in the right-hand side of (22). In [6], general formulas of the form

VBV ~ e 23 [ - Myl -uldy  @3)

i,j=1
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are given (here and in the rest of this discussion we drop the notations”, bearing in mind
we are now brought back to a situation where we can use uniform blob size). In this form
the M;; (x, y) are symmetric functions angt are cut-off functions. These functions are
related to each other and to the matBixhrough general conditions that are detailed in [6]
For our purpose it will be enough to focus on the following particular choice. We choc
¥ij under the form

vij (X) = X X0 (IX])

and the spherically symmetric cuteffis normalized such that
/xi“e(x) dx=d+ 2.

Then a second order approximation of the form (23) is obtained if one chooses

Mij (X, y) = mj (%)

with m=[my;] given in terms ofB through

1
m=B - ——trB.
d+2
As written above, the approximation is second order; higher order approximations cal
obtained by requiring additional moment conditionsdd6].
The PSE scheme for the Navier—Stokes equation which immediately follows from th
formulas is given by

d i
% = ve *J(Xp) Z Ug (X — Rq) (X} — %§4)0° (Xp — %q)

1 Xp + X
X [bij - (H_zzbii%'] (Xp 5 Xq)(wq —wp). (24)

Since the volumes of the particles in the physical and mapped spaces are related thro
vpJ(Xp) = Dp

we observe, as in the 1D example, that the scheme automatically satisfies the consen
property

d
a(vawp> =0.
P

The PSE scheme in Eq. (25) relies on the explicit knowledge of a global mapping in
computational domain. We will see in Subsection 4.3 below a strategy, more suitabls
deal with complex geometries, enabling us to combine several local mappings.
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4. IMPLEMENTATION ISSUES

In the implementation of viscous vortex methods there are two issues that need t
addressed in order to achieve fast and accurate computations. These are:

e the remeshing of the particle locations
e the use of fast codes for the velocity evaluation.

These issues have been addressed in detail in the past [12] for the case of uniform &
The use of variable tools does not pose any additional difficulties as remeshing ca
performed in the mapped uniform space and fast multipole codes are well suited to
concept of variable blob sizes.

4.1. Remeshing for Variable Size Blobs

In all particle simulations of inviscid or high Reynolds flow, it is critical to maintair
some regularity in the Lagrangian grid. The convergence of vortex methods is conditio
by the overlapping at all times of the blobs as shown by numerical analysis and benchr
simulations.

In a variable blob method, regridding must be applied in the mapped coordinates, ar
a frequency which prevents particles living in the low resolution areas from traveling
far in the high resolution areas between two regriddings. This is not a drastic constrain
avortex code, the time-step is typically scaled by the inverse of the maximum vorticity, :
remeshing at every time step with a third or fourth interpolation formula introduces onl
marginal numerical discrepancy [5, 12].

4.2. Fast Multipole Codes and Variable Blobs

In vortex methods we can compute the velocity field using the Biot—Savart law tt
explicitly enforcing the far field boundary condition. The straightforward implementatic
of the method has a nominal cost that scales with the square of the number of computat
elements. Fast multipole algorithms reduce the computational cost of the algorithn
scale linearly with the number of particles by a hierarchical clustering of the partic
into a tree data structure. In the implementation of the fast multipole algorithm as i
discussed in [12] clusters are formed by recursively subdividing the rectangular don
encompassing all particles. This process terminates when less than a certain humt
particles resides in each rectangle. A particle interacts directly with all particles resid
in non-divisible clusters found within a certain range. The interactions with particles in
other clusters are accounted for via the multipole expansions that consider the particl
point vortices—a just approximation a few diameters away from the particle cores. One
see then that as the clustering of particles is determined by the number kept in each
when we maintain a certain regularity—via remeshing—on the locations of the varia
size particles, the clusters formed will maintain the point-vortex attributes required by
multipole algorithm. Hence the implementation of fast codes in the physical space v
variable blobs does not pose any additional constraints.

4.3. Variable Blobs, Local Mappings, and Domain Decomposition

As we will see below, variable blob methods based on a global mapping are a useful
for a number of wall-bounded flows (e.g., channel flows, flows past an airfoil), for whi
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such a mapping is available. For more complex geometries or for domains involving sev
bodies, global mappings are not always available and it is desirable to have a method w
could rely on local mappings and their superposition. Typically, in a configuration involvil
several obstacles, around each obstacle a fine grid would be related to one local map
Local particle solvers, with variable blobs associated to each mapping, must then be lir
through domain decomposition techniques.

Domain decompositions algorithms are distinguished in two broad classes, dep:
ing on whether they are based on matching or overlaping sub-domains. Matching ¢
domains impose strong geometrical constraints on the grids defined on each sub-dor
By contrast, the flexibility added by overlapping sub-domains has already been usefi
derive domain decomposition algorithms that combine Eulerian and Lagrangian sol
[3, 15].

In adomain decomposition algorithm involving particle solvers, the coupling between:
sub-domains must be done at two levels: interface conditions must be supplied to com
particle velocities and to update particle strengths.

Given a vorticity field, the determination of the velocity amounts to the solution of
Poisson equation, and the Schwarz alternating method is a natural way to enforce the
interface conditions. In a vortex code the method iterates between the boundary so
terms that must be added to the Biot—Savart law in each sub-domain. The fact that vari
blobs, corresponding to different mappings, are being implemented, does not introc
any difficulty provided the overlapping zone has a width exceeding the blob sizes in 1
area. We refer to [15] for details on the implementation of this method in the context c
particle-grid domain decomposition.

Once the velocities are evaluated on each sub-domain, it remains to update particl
cations and circulations. Since vortex methods are based on explicit time-discretiza
of the vorticity convection-diffusion equation, the vorticity transfer from one domal
to another is simply achieved by interpolating the particle strengths in the overlapp
zone.

To be more specific let us consider the example sketched in Fig. 1. In this ex&mple
and<2, are two domains with non-uniform grid-spacing, connected with a dofginith
uniform spacing of Fig. 1. Assume that at timpethe vorticity is known as

wlx) = Zaé(s(x —xb)
p

for j =1, 2, 3, respectively, irn2;, 2, Q3. The algorithm to update the particle strengtt
(assuming that the velocities are known everywhere) proceeds as follows:

° Particlesxé andx% lying in 21N Q3 and 2, N Q3, respectively, are remeshed on
the uniform mesh23; we thus obtain a new distributian3(x) = Zp&gS(x —-x3) in Q3
(note thatry = o if X3 € Q3 — (1 U Q).

o Similarly particles< in Q1 N Q3 (respx3 in 22N Q) carrying circulation;azg are
remeshed onthe grid points@f (resp£2,), giving new distributionssT(x) = Zp &g,a X —
Xh), ] =2,3. . A

e Forj=1,2, 3, particlesx}, with circulations’}, are removed and exchange circula-
tions through the PSE scheme with variable blobs according to the mapping defined ir
corresponding sub-domain.
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Earticles
of type 3

Particles
of type 3

7
Qz/ Particles of type 2

FIG. 1. Decomposition of particle locations.

At the end of these steps, the vorticity has been updated in all 3 domains. Provided
the overlapping width exceeds the core radius of the PSE kernel, this procedure allo
consistent transfer of vorticity through diffusion. As a matter of fact, in absence of conv
tion the procedure just outlined is very reminiscent to what a time explicit finite-differen
solver would do under the same circumstances. The transfer of vorticity through convec
is implicity done through the advection of particles which enter dom@ins 2; from the
overlapping zone.

Note that this strategy requires remeshing at every time-step, which makes it cruci
use a non-dissipative remeshing technigue. As we mentioned in Subsection 4.1, thil
fourth order interpolation provides smooth remeshing formulas which can be repeate
every time-step without adding significantly to the truncation error of the overall schen

5. RESULTS

To illustrate the variable blob techniques we will focus on applications to two-dimensio
flows. Implementation of variable blobs for three-dimensional bluff-body flows in curren
under way.
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5.1. Flow Past Cylinders

Vortex methods with variable cores are well suited to simulations of bluff-body flov
as small size particles are needed to resolve the vorticity gradients near the surface ¢
body, while larger blobs would be suitable to discretize the smoothly varying vortices
the wake of the flow. In order to demonstrate the validity of the method we employ here
exponentially varying mapping and (i) we present results comparing the present method
the results obtained from benchmark studies of flows pastimpulsively started cylindersu
non-variable blobs, (ii) we calculate the Strouhal number and the average drag coeffic
for long time simulations at Re 200, and (iii) finally we present preliminary results from
the application of the method to simulation of the flow of high Reynolds numbers pas
cylinder performing rotary oscillations.

For the polar mapping employed in these simulations we will denote dyocations
in the physical space, with non-uniform grid size, andfby locations in the mapped
coordinates, where the grid size is uniform. Here we consider an explicit mapping giver
the formulas

r=¢ (25)
6 =6. (26)
The Laplacian operator in physical space may be expressed as
190 ow 1 0%w
Viw=>"—(r— —-— 27
@ r8r<8r>+r2892 27)
19 af [ of a& 1920
=—-——(r—— — — 28
r8f8r(3r8f)+r2892 (28)
1/3°%0 %0
r2(3f2+802) (29)

Hence the task now is to approximate the modified Laplacian operator with an inte
operator. However, this can be formulated easily because iifi tAg §pace we are dealing
with a uniform grid. Hence the strengths of the computational elements in the phys
space may be updated as

dopy Vo1 A .
BT Z —loqup —aprg] Az (IRp — Rq), (30)

where for the case of a Gaussian core function we have that

1 -Gp-fg?+@p-ig?

e 22 . (31)

ARy = Reh = —
In Fig. 2 we show the computational elements for the simulation of impulsively start
flow at Re= 200, past a circular cylinder using variable and constant blob sizes. The |
ative placement and the area discretized in the two cases can be further appreciate
examining a close up of Fig. 2 in Fig. 3. The savings on computational elements and he
in computational efficiency are one order of magnitude up to the timel% as shown
in Fig. 4. Longer time simulations increase these savings as more and more particle
entering the wake of the cylinder. The savings of one order of magnitude in computatic
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Particle Locations

{Variable and Uniformn blobs)
5 T T T

3 « Uniform 1
« Variable

Il L 1 Il 1

-1.5 05 25 45 6.5 8.5 108

FIG. 2. Impulsively started cylinder, Re 200, T= 10.0—particle locations.

time are achieved while maintaining the accuracy of the method as it is demonstrate
Fig. 5 showing the flow drag coefficient and in Fig. 6 showing vorticity contours for th
impulsively started cylinder.

Longer time simulations were also conducted using the variable size vortex mett
In Fig. 7 we show the particle locations in the wake of a circular cylinder at R@0

Particle Locations

{Variable and Uniform blgobs)
0.5
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FIG. 3. Close-up of particle locations shown in Fig. 2.
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FIG. 4. Number of particles as a function of time for Re200. Variable size blobs (dashed line) and constan
size blobs (solid line).

while in Fig. 8 we show the vorticity contours of the flow field. Calculations of the a\
erage drag coefficientCy ~ 1.35) and the Strouhal frequenc®i~ 0.19) are in good
agreement with results reported in the literature for related two-dimensional simt
tions [9].

Impulsively Started Cylinder

Re =200
3 T T T T
25 — Uniform blobs A
—— Variable blobs
2 F i
(O]
15t .
[a)
-‘_\_\""‘-"-_
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1r d
05 i
0 2 4 6 8 10
UT/R

FIG.5. Comparison of drag coefficient computed with uniform and variable. size particles. Impulsively star
cylinder, Re=200.
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FIG.6. \orticity contours at T=15, as computed by uniform (top half) and variable (bottom half) size vorte
methods. Impulsively started cylinder, Re200.

Finally using the computational efficiency provided by variable vortex methods \
have conducted long time calculations of a cylinder undergoing rotary oscillations. |
Re=2000, the results of the 2D simulations showed a drastic drag reduction for cer
rotational frequencies. This drag reduction is attributed to the modification of the shedc
mechanisms from the surface of the cylinder. As shown in Fig. 9 the cylinder rotation
sults in the ejection of bipolar vortex structures that result in high drag reduction. Furt
investigations and extensive two- and three-dimensional studies of these phenomena a
subject of ongoing research.
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FIG. 7. Particle locations for a vortex wake (at R&00) discretized by variable cores.
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FIG. 8. Vorticity contours for a vortex wake at Re200.
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FIG. 9. \Vorticity contours and drag coefficient for a cylinder performing rotary oscillations at Ra00.
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5.2. Vortex-Wall Interaction: Rebound of a Dipole

We now consider the classical case of a dipole impinging on a flat wall. System:
comparisons have shown that vortex methods with uniform blobs give results of the s
accuracy, for a given mesh size, as centered finite-difference schemes [15]. We wish he
allow grid refinement near the wall, along both directions. Although this geometry appe
simpler than the cylinder, it turns out that the mapping is more complex to handle, as
diffusion operator in the mapped coordinates does not reduce to a diagonal matrix.
geometry consists of a dipole in a half-planey > 0) and the wall is ay = 0; the mapping
used in our simulations is, with the notations introduced in Subsection 3.2.2,

x=Xf(9) (32)
y=f® (33)

r=ifon(?) 1]

wherel is a positive parameter. As aresult, the grid undergoes a stretching in both direct
with a stretching factor of 2 at= ). Straightforward calculations yield

18
1.

with

B(x,y) =

>

The PSE formula (24) was then implemented with a cutdeff) = 1/(1 + r®). Velocity
evaluations were done by a Biot—Savart law with core size reflecting the volume expan
of the grid, that is,

e(x,y) = el (92

InFigs. 10, 11, we compare the results obtained by the variable-blob methadiwitd § =
1/256, andx =0.25 or . =oc (in the latter case, the blobs have a uniform size). W
also show in Fig. 12 the results in the case a low resolution is used everyviherso(
dX =d¥y=1/128). The initial condition is a Lamb dipole of unit circulation [14] and the
Reynolds number is 400. These results show that, while it is important to have good r
lution at the wall to capture accurately the vorticity created there (the last picture in Fig.
shows that an insufficient resolution results in a delay in the dynamics), a lower resolu
away from the wall does not affect the quality in the results. To conclude this example
us mention that an extension of a finite-difference scheme to the refined grid would ng
straightforward (see [13] for a method in the spirit of finite differences based on B-splil
to allow refinement in all directions near the wall).

5.3. The Case of Multiple Bodies: Local Mappings and Domain Decomposition

Let us finally give an example where several local mappings are used in order to a
particle refinement near several obstacles. We consider the case of the flow past two c
ders. Around each cylinder patrticles are remeshed on a polar grid with linear stretcl
in the radial direction, along the same lines as in Subsection 5.1. These grids extend
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FIG.10. Successive stages of a vortex dipole impinging on a wa#:1T0, 2.0. Right column, uniform blobs,
fine grid; left column, variable blobs, coarse to fine grid ratio 2 frpm O to y =0.25. Particle locations are
indicated by dots (for clarity only one-fourth of the particles is shown).

cylinder radius. In between the cylinders, particles are regridded on a Cartesian unif
mesh, with mesh size approximately corresponding to the mesh size of the polar grid ir
outer layer (see Fig. 13).

In these calculations we were only interested in the interaction of the wakes with
bodies; Fig. 14 shows that the coupling techniques described in Subsection 4.3 do &
a smooth transfer of vorticity between the sub-domains. Note that for calculations ¢

a4 s

FIG. 11. Successive stages of a vortex dipole impinging on a wa#:410, 6.0. For description see Fig. 10.
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FIG. 12. Rebound of a vortex dipole impinging on a wall a&B.0. Bottom, uniform blobs, coarse grid; top,
variable blobs, coarse to fine grid ratio 2 frgme= 0 to y = 0.25; right column, uniform blobs, coarse grid.
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FIG. 13. Flow around two asymmetrically placed cylinders. Grids used for regridding the particles.
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FIG. 14. Flow around two asymmetric cylinders. Successive stages of the vorticity contours.

longer times, with wakes extending far behind the second cylinder, it would be natural .
straightforward to implement a third mapping allowing lower resolution down-stream.

6. CONCLUSIONS

In this paper we have presented a new methodology that aims at enhancing the ade
character of vortex methods. The governing equations for the evolution of vortex partic
have been derived for particles of varying blob size. We have also presented the formule
for extending this methodology to flows around multiple bodies.
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The results presented herein demonstrate the applicability of this method and the sa
at can be obtained in computations using variable size vortex methods. We believe
the present formulation vortex methods offer an interesting alternative to grid ba
ethodologies. The adaptivity and the Lagrangian character of vortex methods is reta

while it is complemented by capabilities such as mesh-embedding.

Present research is aimed at combining effectively in three dimensions grid based

particle methods for different parts of the domain. Variable size vortex methods are a
aspect of this approach.

N
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