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The accuracy of vortex methods employing smooth vortex particles/blobs is de-
termined by the blob size, which can be viewed as a mollifier of the vorticity field.
For computational efficiency, this core size needs to be spatially variable as particles
are used to discretize different parts of the flow field, such as the boundary layer
and the wake in bluff body flows. We derive here a consistent approximation for the
viscous Navier–Stokes equations using variable size vortex particles. This derivation
is based on the implementation of mappings that allow the consistent formulation of
the diffusion and convection operators of the Navier–Stokes equations in the context
of vortex methods. Several local mappings can be combined giving the capability of
“mesh-embedding” to vortex methods. It is shown that the proposed variable method
offers a significant improvement on the computational efficiency of constant core
size methods while maintaining the adaptive character of the method. The method is
ideally suited to flows such as wakes and shear layers and the validity of the approach
is illustrated by showing results from cylinder flows and wall-vortex interactions. Us-
ing this scheme, previously unattainable simulations of cylinders undergoing rotary
oscillations at high Reynolds numbers reveal an interesting mechanism for drastic
drag reduction. c© 2000 Academic Press
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1. INTRODUCTION

Vortex methods are based on the particle discretization of the Lagrangian form of the
vorticity-velocity formulation of the Navier–Stokes equations. The computational elements
are vorticity carrying particles that are being convected with the velocity of the flow field.
The vorticity field can always be reconstructed by a linear superposition of the individ-
ual vorticity fields carried by the particles. In smooth vortex methods—as opposed to
point vortex methods—each particle is associated with a smooth core function, orvor-
tex blobwhich is in particular used in the velocity evaluation by a mollified Biot–Savart
law [1].
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The Lagrangian form of vortex methods avoids the explicit discretization of the convective
term in the Navier–Stokes equations and the associated stability constraints. The particle
positions are modified according to the local flow map, making the method self-adaptive.
This adaptation comes at the expense of the regularity of the particle distribution as particles
move in order to adapt to the gradients of the flow field. However, the regularity of the particle
distribution is important for the convergence of the method. This has been demonstrated
by both theoretical results and detailed numerical studies [12]. Particle regularity is best
guaranteed by remeshing the particle locations on a regular grid [4] and precludes the use
of the random walk method for the simulation of diffusion in direct numerical simulations.
We will here consider vortex methods where particle circulations are redistributed among
particles to account for diffusion, through the so-called particle strength exchange (PSE)
algorithm [4, 6].

Besides particle regularity, another critical factor for the accuracy in the computation of
both particle diffusion and velocities is an overlaping condition which imposes that the size
of the core surrounding each particle exceeds the inter-particle spacing. This overlapping
requirement imposes a servere restriction on the overall adaptivity of vortex methods. For
example, in bluff body flows the boundary of the body is the source of vorticity in the flow
and it is important to discretize adequately the boundary layer region near the surface of the
body. This requirement dictates the size of the particle cores. However, for constant size vor-
tex blobs, as the vorticity gradients decay on the wake, it is clear that the flow is discretized
using unnecessarily large numbers of computational elements. This deficiency of constant
size vortex methods clearly detracts from the adaptive character of the method and its ca-
pability to accurately resolve vorticity gradients while remaining computationally efficient.

This issue has been addressed extensively in the context of grid based methods, in cases
where the vorticity gradients are well defined, such as in bluff body flows. The adaptivity in
grid based methods is obtained by spatially adjusting the grid size and/or using techniques
such as B-splines and embedded meshes [13]. In vortex methods Hou [10] first introduced
a variable size vortex method for the Euler equations and he demonstrated its convergence.
However, the straightforward implementation of Hou’s method in the context of viscous
vortex methods [11] is not possible due to the moment properties required by the scheme of
particle strength exchange for the simulation of diffusion. Instead, as shown in this paper,
variable vortex blobs can be incorporated by introducing a mapping between the spatially
varying physical domain and a uniform mapped domain. The formulation of the diffusion
operator is further carried out in the mapped domain where the mapped coordinates reside
on a regular equispaced grid and discretized on particles through generalized PSE formulas.
In this context variable size vortex methods are related to LES formulations with spatially
varying filters as introduced by Ghosal and Moin [7].

The mappings required in the formulation of variable size vortex methods can be global
or local mappings. In a domain decomposition approach, the use of local mappings is easily
extended to combinations of several local mappings, thus providing a vortex method with
mesh-embedding capabilities.

The paper is organized as follows. In Section 2 we outline the governing Navier–Stokes
equations and their discretization using vortex methods. In Section 3 we present the formu-
lation for variable size vortex methods and in Section 4 we discuss implementation issues,
such as the use of the method along with fast N-body solvers. In Section 5 we present results
from the application of the method in two dimensions and we compare its performance with
vortex methods employing constant size vortex blobs.
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2. GOVERNING EQUATIONS AND VORTEX METHODS

The evolution of the vorticity field in a three-dimensional, incompressible, viscous flow is
described by the Navier–Stokes equations. These equations may be expressed in a velocity-
vorticity (u,ω=∇ ×u) formulation as

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u− ν1ω = 0. (1)

The velocity field is obtained by solving the Poisson equation

1u = −∇ × ω. (2)

In two dimensions, the vorticity is orthogonal to the flow plane, so that the stretching term
disappears and the vorticity equation reduces to a convection-diffusion equation.

The Navier–Stokes equations can be expressed in a Lagrangian formulation as

dxp

dt
= u(xp, t) (3)

dω p

dt
= [∇u(xp, t)] ωp + ν1ω(xp), (4)

wherexp, ω p denote the locations and the vorticity carried by the fluid elements. These
two equations can be solved by simultaneously updating the locations and strengths of
the vorticity carrying fluid elements. Alternatively, they may be solved in sub-steps by
employing a viscous splitting algorithm where in the first sub-step the fluid elements are
advanced with the local flow velocity and their circulations are updated to take into account
the vorticity stretching. Diffusion acts at these new locations to modify the vorticity field
of the flow.

Vortex methods are based on this Lagrangian description and use particles as vorticity
carrying computational elements. The method amounts to tracking these particles and their
circulations. This requires one to compute velocities and velocity gradients at particle
locations. In this paper, we will essentially focus on the totally grid free implementation of
vortex methods, where velocity calculations are based on the Biot–Savart law

u =
∫

K(x− y)× ω dy+ U0(x, t). (5)

In the above equationU0(x, t) is the solution of the homogenous Eq. (2), and

K(z) =
− 1

2π z/|z|2 in two dimensions

1
4π z/|z|3 in three dimensions.

This formula is differentiated to obtain velocity gradients. In point vortex methods the
approximation of the vorticity field is

ω(x) =
∑

p

vpω pδ(x− xp), (6)

wherexp, vp, andω p respectively represent the locations, volumes, and vorticities of the
particles. In vortex blob methods, particles are assigned a finite core sizeε that is used
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to compute the velocity field. More precisely, the core shape of the particles is obtained
through a cut-off functionζ satisfying

∫
ζ(x) dx= 1 and the vortex-blob approximation is

given by

ωε(x) =
∑

p

vpω pζε(x− xp) (7)

with

ζε(x) = ε−dζ

(
x
ε

)
(here and in the sequeld is the number of space dimensions). The regularization implied
in this formula is motivated by the fact that the particle representation (6) would lead
to singular evaluations of the velocity in (5). For a thorough discussion of the point and
smooth vortex methods and their numerical analysis we refer to [4] and the references
therein.

The numerical implementation of (3)–(4) is completed by discretizing the contribu-
tion of the diffusion. Essentially two classes of techniques are presently available for that
part of the equations. One is the random walk method of Chorin [1]. The other class consists
of resampling schemes, originating with the scheme of Cottet and Mas-Gallic [2]. In this
paper we will be concerned with the particle strength exchange method [6]. This resampling
scheme is based on integral approximations of the diffusion operator that can be written in
the general form

1ω ≈ ε−2
∫
ηε(|x− y|)[ω(x)− ω(y)] dy, (8)

where

ηε(x) = ε−dη

(
x
ε

)
andη is a spherically symmetric function satisfying the normalization condition∫

x2
i η(x) dx = 2 (9)

for i = 1, . . . ,d. High order approximations can be obtained through the choice of suitable
functionsη. In practice, one chooses a function that has compact support or is decaying
rapidly at infinity. The discretization of the integral in the right-hand side of (8) thus only
involves a few particles. This scheme is rather straightforward to implement and adds
a marginal numerical cost to the velocity evaluations. It has been shown to yield high
resolution particle schemes for viscous flows [11]. Finally it can be easily extended to
handle spatially varying diffusion coefficients, a flexibility which will prove useful in the
sequel. The vortex blob method defined so far can be summarized by the following system
of ordinary differential equations for the particle locations and vorticities

dxp

dt
=

N∑
q=1

vq Kε(xp − xq)× ωq + U0(xp, t) (10)

dω p

dt
=
[

N∑
q=1

vq∇Kε(xp− xq)×ωq

]
ω p+ νε−2

N∑
q=1

vq[ωq−ω p]ηε(|xp−xq|). (11)
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These equations must be supplemented by initial conditions which depend on how particles
are initialized.

3. VORTEX METHODS WITH VARIABLE BLOB SIZES

The parameterε used in the definition of the blobs as well as in the diffusion approximation
defines the minimal scales that can be resolved by the method. It plays the role of the grid
size in grid based Eulerian methods. As such it is natural to allow this parameter to vary
with time and space. Here we are concerned with the case of a spatially variable blob size
and we first consider its implication in velocity calculations.

3.1. Variable Core Size for the Biot–Savart Integral

A variable blob method would consist of defining a functionε(x)¿ 1 and modifying (7)
into

ωh
ε (x) =

∑
p

αpζε(xp)

(
x− xh

p

)
. (12)

This leads to the velocity formula

uh(x) =
∑

p

αpK ε(xp)

(
x− xh

p

)
. (13)

The convergence of the method based on this formulas for the particle velocity evaluations
has been proved for two-dimensional flows by T. Hou [10], under the assumption that there
exists a smooth functionf such that

ε(x) = ε f (x) with 0≤ C ≤ f (x) ≤ C′, (14)

for some constantsC,C′. The numerical analysis of particle methods generally distinguishes
the contribution to the discretization error resulting, on the one hand, from the sampling of
the continuous vorticity onto a discrete set of particles, and, on the other hand, from the
regularization involved in the velocity evaluations.

Let us only outline here the error analysis for the regularization error produced on a
smooth vorticity fieldφ. This regularization error can be expressed as

E =
∫
φ(y)ζε(y)(x− y) dy− φ(x).

For simplicity, let us assume that the cut-offζ has a compact support, of size unity. As
it is classical in particle methods, we assume that this cut-off has orderr in the sense
that ∫

ζ(x) dx = 1 (15)∫
xiζ(x) dx = 0 if |i| ≤ r − 1 (16)∫

|x|r |ζ(x)| dx <∞, (17)
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wherei= (i1, i2) is a multi-index,|i| = i1+ i2, andxi = xi1
1 xi2

2 . We first set

z= x− y
ε(y)

.

We can write

∂zi

∂yj
= 1

ε(y)

[
δi j − εzi

∂ f

∂yj

]
and a Taylor expansion off aroundx yields

∂zi

∂yj
= 1

ε(y)

[
δi j +

r∑
k=1

εkzkak

]
+ O(εr ).

This first shows that, forε small enough,y→ z defines a one-to-one smooth mapping and
that the Jacobian of this mapping can be evaluated as

ε(y)2
[

1+
r∑

k=1

εkzkbk

]
+ O(εr ).

As a result ∫
ζε(y)(x− y) dy = 1+ O(εr )

and we can rewriteE as

E =
∫
(φ(y)− φ(x))ζε(y)(x− y) dy+ O(εr ).

If φ is of classCr , its Taylor expansion gives

E =
∑
|α|≤r

cα‖φ‖r,∞
∫

zαζ(z)ε(y)|α| dz+ O(εr ).

Upon expandingf again aroundx, one finally obtains

E =
∑

1≤|α|≤r−1

dα‖φ‖r,∞ε|α|
∫

zαζ(z) dz+ O(εr ).

and, in view of the conditions (16) and (17),E=O(εr ).
It follows that, for inviscid flows, the vortex method with smoothly varying blob size has

the same convergence properties as for uniform blobs.

3.2. Diffusion with Variable Core Sizes

We are now concerned with the implementation of a PSE formula similar to (8) with
variable values ofε.
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Let us first observe that (8) can be derived starting from a straightforward Taylor expansion
of ω aroundx,

ω(y) = ω(x)+ (y− x) · ∇ω(x)+
∑
i, j

(xi − yi )(xj − yj )
∂2ω

∂xi ∂xj
+ · · · .

By the symmetry properties ofη, the first order terms and the cross terms involving the
second order derivates ofω drop out in the right-hand side of (8). The normalization
condition (9) then leads to the desired approximation. If we now follow the numerical
analysis outlined in Subsection 3.1, we notice that a straightforward use of a variable value
of ε in the right-hand side of (8) would bring nonvanishing terms from a combination of
first order terms in the Taylor expansions ofω andε. To avoid this inconsistency, we need to
assume a mapping from the physical coordinates, with variable-size blobs, to a coordinate
system where blobs have a uniform size.

For simplicity we present first the analysis for the one-dimensional case and then we
generalize it for arbitrary mappings. Particular mapping examples are described in Section 5.

3.2.1. The 1-D case.We will denote byx, y locations in the physical space, with
variable blob size, and bŷx, ŷ locations in the mapped coordinates, where the grid size is
uniform. We will assume that the mapping is given by the formulas

x = f (x̂), x̂ = g(x), ω(x) = ω̂(x̂).

Writing derivatives in the mapped coordinates yields

d2ω

dx2
= h(x̂)

d

dx̂

[
h(x̂)

dω̂

dx̂

]
,

whereh(x̂)= g′(x). Next, we use the following integral approximation, the proof of which
relies on Taylor expansions at order 2 similar to those in [4] (proof of Eq. 8),

d

dx̂

[
h(x̂)

dω̂

dx̂

]
' ε−3

∫
h(x̂)+ h(ŷ)

2
[ω̂(x̂)− ω̂(ŷ)]η

(
x̂ − ŷ

ε

)
dŷ.

In the above formula, the kernelη satisfies the moment properties (9) andε is aconstantblob
size. This leads to the following PSE scheme for the diffusion equation in one dimension,

dω p

dt
= νε−3h(x̂ p)

∑
q

v̂q
h(x̂ p)+ h(x̂q)

2
[ωq − ω p]η

(
x̂ p − x̂q

ε

)
, (18)

where the ˆvq denote the volumes of the mapped particles. In this formula, vorticity is
exchanged in a range of orderε around x̂ p in the mapped coordinate. In the physical
coordinates this range becomesεh(x̂ p)which corresponds to the desired variable blob size.
Notice also that the volumes of the physical and mapped particles are related through the
Jacobian of the mapping

v̂q = vqh(x̂q)

which establishes that the scheme in Eq. (18) is indeed conservative.
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3.2.2. General case.We now derive general formulas for PSE schemes using variable
blob size. We assume that the computational domainÄ, where we wish to use variable blob
size, is mapped through a mapping denoted byF to a domainÄ̂ with uniform blobs. We
will use the notations

x = F(x̂); u(x) = û(x̂).

We consider the inverse mappingG=F−1 and set, fori, j in [1, d] whered is the dimension,

ai j = ∂Gi

∂xj
.

With these notations, we may write

1xu =
∑
i, j,k

aji
∂

∂ x̂ j

(
aki

∂û

∂ x̂k

)
. (19)

If J= det[ai j ] denotes the Jacobian determinant of the mappingF, we observe that, for
i ∈ [1, d],

d∑
j=1

∂

∂ x̂ j
(aji J) = 0. (20)

This results from the fact that ifφ is any vector-valued test function defined inÄ and
vanishing on its boundary, we have

0=
∫
Ä

divxφ dx =
∑

j

∫
Ä̂

aji
∂φ̂i

∂ x̂ j
J−1 dx̂.

By the divergence theorem, this implies

0=
∑

j

∫
Ä̂

∂

∂ x̂ j
(aji J−1)φ̂i dx̂

which proves our claim. Hence we can rewrite (19) as

1xu = J
∑
j,k

∂

∂ x̂ j

(
bjk

∂û

∂ x̂k

)
(21)

with bjk = J−1∑
i akiaji , or, equivalently,

1xu = Jdivx̂[B∇x̂û], (22)

whereB is the matrix with entriesbi j .
It now remains to derive integral approximations in the mapped coordinates for the

differential operator in the right-hand side of (22). In [6], general formulas of the form

div[B∇u](x) ' ε−2
d∑

i, j=1

∫
ψε

i j (x− y)Mi j (x, y)[u(y)− u(x)] dy (23)
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are given (here and in the rest of this discussion we drop the notations ,̂ bearing in mind that
we are now brought back to a situation where we can use uniform blob size). In this formula,
the Mi j (x, y) are symmetric functions andψε

i j are cut-off functions. These functions are
related to each other and to the matrixB through general conditions that are detailed in [6].
For our purpose it will be enough to focus on the following particular choice. We choose
ψi j under the form

ψi j (x) = xi x j θ(|x|)

and the spherically symmetric cutoffθ is normalized such that∫
x4

i θ(x) dx = d + 2.

Then a second order approximation of the form (23) is obtained if one chooses

Mi j (x, y) = mi j

(
x+ y

2

)
with m= [mi j ] given in terms ofB through

m= B− 1

d + 2
tr B.

As written above, the approximation is second order; higher order approximations can be
obtained by requiring additional moment conditions forθ [6].

The PSE scheme for the Navier–Stokes equation which immediately follows from these
formulas is given by

dω p

dt
= νε−4J(xp)

∑
q,i, j

v̂q
(
x̂i

p − x̂i
q

)(
x̂ j

p − x̂ j
q

)
θε(x̂p − x̂q)

×
[
bi j − 1

d + 2

∑
i

bi i δi j

](
x̂p + x̂q

2

)
(ωq − ω p). (24)

Since the volumes of the particles in the physical and mapped spaces are related through

vp J(xp) = v̂p

we observe, as in the 1D example, that the scheme automatically satisfies the conservation
property

d

dt

(∑
p

vpω p

)
= 0.

The PSE scheme in Eq. (25) relies on the explicit knowledge of a global mapping in the
computational domain. We will see in Subsection 4.3 below a strategy, more suitable to
deal with complex geometries, enabling us to combine several local mappings.
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4. IMPLEMENTATION ISSUES

In the implementation of viscous vortex methods there are two issues that need to be
addressed in order to achieve fast and accurate computations. These are:

• the remeshing of the particle locations
• the use of fast codes for the velocity evaluation.

These issues have been addressed in detail in the past [12] for the case of uniform blobs.
The use of variable tools does not pose any additional difficulties as remeshing can be
performed in the mapped uniform space and fast multipole codes are well suited to the
concept of variable blob sizes.

4.1. Remeshing for Variable Size Blobs

In all particle simulations of inviscid or high Reynolds flow, it is critical to maintain
some regularity in the Lagrangian grid. The convergence of vortex methods is conditioned
by the overlapping at all times of the blobs as shown by numerical analysis and benchmark
simulations.

In a variable blob method, regridding must be applied in the mapped coordinates, and at
a frequency which prevents particles living in the low resolution areas from traveling too
far in the high resolution areas between two regriddings. This is not a drastic constraint: in
a vortex code, the time-step is typically scaled by the inverse of the maximum vorticity, and
remeshing at every time step with a third or fourth interpolation formula introduces only a
marginal numerical discrepancy [5, 12].

4.2. Fast Multipole Codes and Variable Blobs

In vortex methods we can compute the velocity field using the Biot–Savart law thus
explicitly enforcing the far field boundary condition. The straightforward implementation
of the method has a nominal cost that scales with the square of the number of computational
elements. Fast multipole algorithms reduce the computational cost of the algorithm to
scale linearly with the number of particles by a hierarchical clustering of the particles
into a tree data structure. In the implementation of the fast multipole algorithm as it is
discussed in [12] clusters are formed by recursively subdividing the rectangular domain
encompassing all particles. This process terminates when less than a certain number of
particles resides in each rectangle. A particle interacts directly with all particles residing
in non-divisible clusters found within a certain range. The interactions with particles in the
other clusters are accounted for via the multipole expansions that consider the particles as
point vortices—a just approximation a few diameters away from the particle cores. One can
see then that as the clustering of particles is determined by the number kept in each cell,
when we maintain a certain regularity—via remeshing—on the locations of the variable
size particles, the clusters formed will maintain the point-vortex attributes required by the
multipole algorithm. Hence the implementation of fast codes in the physical space with
variable blobs does not pose any additional constraints.

4.3. Variable Blobs, Local Mappings, and Domain Decomposition

As we will see below, variable blob methods based on a global mapping are a useful tool
for a number of wall-bounded flows (e.g., channel flows, flows past an airfoil), for which
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such a mapping is available. For more complex geometries or for domains involving several
bodies, global mappings are not always available and it is desirable to have a method which
could rely on local mappings and their superposition. Typically, in a configuration involving
several obstacles, around each obstacle a fine grid would be related to one local mapping.
Local particle solvers, with variable blobs associated to each mapping, must then be linked
through domain decomposition techniques.

Domain decompositions algorithms are distinguished in two broad classes, depend-
ing on whether they are based on matching or overlaping sub-domains. Matching sub-
domains impose strong geometrical constraints on the grids defined on each sub-domain.
By contrast, the flexibility added by overlapping sub-domains has already been useful to
derive domain decomposition algorithms that combine Eulerian and Lagrangian solvers
[3, 15].

In a domain decomposition algorithm involving particle solvers, the coupling between the
sub-domains must be done at two levels: interface conditions must be supplied to compute
particle velocities and to update particle strengths.

Given a vorticity field, the determination of the velocity amounts to the solution of a
Poisson equation, and the Schwarz alternating method is a natural way to enforce the right
interface conditions. In a vortex code the method iterates between the boundary source
terms that must be added to the Biot–Savart law in each sub-domain. The fact that variable
blobs, corresponding to different mappings, are being implemented, does not introduce
any difficulty provided the overlapping zone has a width exceeding the blob sizes in this
area. We refer to [15] for details on the implementation of this method in the context of a
particle-grid domain decomposition.

Once the velocities are evaluated on each sub-domain, it remains to update particle lo-
cations and circulations. Since vortex methods are based on explicit time-discretization
of the vorticity convection-diffusion equation, the vorticity transfer from one domain
to another is simply achieved by interpolating the particle strengths in the overlapping
zone.

To be more specific let us consider the example sketched in Fig. 1. In this example,Ä1

andÄ2 are two domains with non-uniform grid-spacing, connected with a domainÄ3 with
uniform spacing of Fig. 1. Assume that at timetn the vorticity is known as

ω j (x) =
∑

p

α j
pδ
(
x− x j

p

)
for j = 1, 2, 3, respectively, inÄ1, Ä2, Ä3. The algorithm to update the particle strength
(assuming that the velocities are known everywhere) proceeds as follows:

• Particlesx1
p andx2

p lying in Ä1∩Ä3 andÄ2 ∩Ä3, respectively, are remeshed on
the uniform meshÄ3; we thus obtain a new distribution ˜ω3(x)= ∑p α̃

3
pδ(x− x3

p) in Ä3

(note that ˜α3
p=α3

p if x3
p ∈Ä3− (Ä1∪Ä2)).

• Similarly particlesx3
p inÄ1∩Ä3 (resp.x2

p inÄ2∩Ä3) carrying circulationsα3
p are

remeshed on the grid points ofÄ1 (resp.Ä2), giving new distributions ˜ω j (x)= ∑p α̃
j
pδ(x−

x j
p), j = 2, 3.
• For j = 1, 2, 3, particlesx j

p with circulationsα̃ j
p are removed and exchange circula-

tions through the PSE scheme with variable blobs according to the mapping defined in the
corresponding sub-domain.
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FIG. 1. Decomposition of particle locations.

At the end of these steps, the vorticity has been updated in all 3 domains. Provided that
the overlapping width exceeds the core radius of the PSE kernel, this procedure allows a
consistent transfer of vorticity through diffusion. As a matter of fact, in absence of convec-
tion the procedure just outlined is very reminiscent to what a time explicit finite-difference
solver would do under the same circumstances. The transfer of vorticity through convection
is implicity done through the advection of particles which enter domainsÄi −Ä j from the
overlapping zone.

Note that this strategy requires remeshing at every time-step, which makes it crucial to
use a non-dissipative remeshing technique. As we mentioned in Subsection 4.1, third or
fourth order interpolation provides smooth remeshing formulas which can be repeated at
every time-step without adding significantly to the truncation error of the overall scheme.

5. RESULTS

To illustrate the variable blob techniques we will focus on applications to two-dimensional
flows. Implementation of variable blobs for three-dimensional bluff-body flows in currently
under way.
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5.1. Flow Past Cylinders

Vortex methods with variable cores are well suited to simulations of bluff-body flows
as small size particles are needed to resolve the vorticity gradients near the surface of the
body, while larger blobs would be suitable to discretize the smoothly varying vortices in
the wake of the flow. In order to demonstrate the validity of the method we employ here an
exponentially varying mapping and (i) we present results comparing the present method with
the results obtained from benchmark studies of flows past impulsively started cylinders using
non-variable blobs, (ii) we calculate the Strouhal number and the average drag coefficient
for long time simulations at Re= 200, and (iii) finally we present preliminary results from
the application of the method to simulation of the flow of high Reynolds numbers past a
cylinder performing rotary oscillations.

For the polar mapping employed in these simulations we will denote byr, θ locations
in the physical space, with non-uniform grid size, and byr̂ , θ̂ locations in the mapped
coordinates, where the grid size is uniform. Here we consider an explicit mapping given by
the formulas

r = er̂ (25)

θ = θ̂ . (26)

The Laplacian operator in physical space may be expressed as

∇2ω = 1

r

∂

∂r

(
r
∂ω

∂r

)
+ 1

r 2

∂2ω

∂θ2
(27)

= 1

r

∂

∂ r̂

∂ r̂

∂r

(
r
∂ r̂

∂r

∂ω̂

∂ r̂

)
+ 1

r 2

∂2ω̂

∂θ̂2
(28)

= 1

r 2

(
∂2ω̂

∂ r̂ 2
+ ∂

2ω̂

∂θ̂2

)
. (29)

Hence the task now is to approximate the modified Laplacian operator with an integral
operator. However, this can be formulated easily because in the (r̂ , θ̂ ) space we are dealing
with a uniform grid. Hence the strengths of the computational elements in the physical
space may be updated as

dαp

dt
= ν

r 2
pε̂

2

N∑
q=1

1

r 2
q

[αqvp−αpvq]3̂ε̂(|R̂p− R̂q|), (30)

where for the case of a Gaussian core function we have that

3̂ε̂(|R̂p − R̂q|) = 1

πε̂2
e
−(r̂ p−r̂q )2+(θ̂ p−θ̂q )2

2ε̂2 . (31)

In Fig. 2 we show the computational elements for the simulation of impulsively started
flow at Re= 200, past a circular cylinder using variable and constant blob sizes. The rel-
ative placement and the area discretized in the two cases can be further appreciated by
examining a close up of Fig. 2 in Fig. 3. The savings on computational elements and hence
in computational efficiency are one order of magnitude up to the time T= 15 as shown
in Fig. 4. Longer time simulations increase these savings as more and more particles are
entering the wake of the cylinder. The savings of one order of magnitude in computational
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FIG. 2. Impulsively started cylinder, Re= 200, T= 10.0—particle locations.

time are achieved while maintaining the accuracy of the method as it is demonstrated in
Fig. 5 showing the flow drag coefficient and in Fig. 6 showing vorticity contours for this
impulsively started cylinder.

Longer time simulations were also conducted using the variable size vortex method.
In Fig. 7 we show the particle locations in the wake of a circular cylinder at Re= 200

FIG. 3. Close-up of particle locations shown in Fig. 2.
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FIG. 4. Number of particles as a function of time for Re= 200. Variable size blobs (dashed line) and constant
size blobs (solid line).

while in Fig. 8 we show the vorticity contours of the flow field. Calculations of the av-
erage drag coefficient (Cd≈ 1.35) and the Strouhal frequency (St≈ 0.19) are in good
agreement with results reported in the literature for related two-dimensional simula-
tions [9].

FIG. 5. Comparison of drag coefficient computed with uniform and variable. size particles. Impulsively started
cylinder, Re= 200.
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FIG. 6. Vorticity contours at T= 15, as computed by uniform (top half ) and variable (bottom half) size vortex
methods. Impulsively started cylinder, Re= 200.

Finally using the computational efficiency provided by variable vortex methods we
have conducted long time calculations of a cylinder undergoing rotary oscillations. For
Re= 2000, the results of the 2D simulations showed a drastic drag reduction for certain
rotational frequencies. This drag reduction is attributed to the modification of the shedding
mechanisms from the surface of the cylinder. As shown in Fig. 9 the cylinder rotation re-
sults in the ejection of bipolar vortex structures that result in high drag reduction. Further
investigations and extensive two- and three-dimensional studies of these phenomena are the
subject of ongoing research.

FIG. 7. Particle locations for a vortex wake (at Re= 200) discretized by variable cores.
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FIG. 8. Vorticity contours for a vortex wake at Re= 200.

FIG. 9. Vorticity contours and drag coefficient for a cylinder performing rotary oscillations at Re= 2000.
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5.2. Vortex-Wall Interaction: Rebound of a Dipole

We now consider the classical case of a dipole impinging on a flat wall. Systematic
comparisons have shown that vortex methods with uniform blobs give results of the same
accuracy, for a given mesh size, as centered finite-difference schemes [15]. We wish here to
allow grid refinement near the wall, along both directions. Although this geometry appears
simpler than the cylinder, it turns out that the mapping is more complex to handle, as the
diffusion operator in the mapped coordinates does not reduce to a diagonal matrix. The
geometry consists of a dipole in a half-plane (x, y> 0) and the wall is aty= 0; the mapping
used in our simulations is, with the notations introduced in Subsection 3.2.2,

x = x̂ f ′(ŷ) (32)

y = f (ŷ) (33)

with

f (ŷ) = λ
[
exp

(
ŷ

λ

)
− 1

]
,

whereλ is a positive parameter. As a result, the grid undergoes a stretching in both directions
with a stretching factor of 2 aty= λ. Straightforward calculations yield

B(x, y) =
[

1+ x̂2

λ2 − x̂
λ

− x̂
λ

1

]
.

The PSE formula (24) was then implemented with a cut-offθ(r )= 1/(1+ r 5). Velocity
evaluations were done by a Biot–Savart law with core size reflecting the volume expansion
of the grid, that is,

ε(x, y) = ε| f ′(ŷ)|2.

In Figs. 10, 11, we compare the results obtained by the variable-blob method withdx̂= dŷ=
1/256, andλ= 0.25 or λ=∞ (in the latter case, the blobs have a uniform size). We
also show in Fig. 12 the results in the case a low resolution is used everywhere (λ=∞,
dx̂= dŷ= 1/128). The initial condition is a Lamb dipole of unit circulation [14] and the
Reynolds number is 400. These results show that, while it is important to have good reso-
lution at the wall to capture accurately the vorticity created there (the last picture in Fig. 11
shows that an insufficient resolution results in a delay in the dynamics), a lower resolution
away from the wall does not affect the quality in the results. To conclude this example, let
us mention that an extension of a finite-difference scheme to the refined grid would not be
straightforward (see [13] for a method in the spirit of finite differences based on B-splines
to allow refinement in all directions near the wall).

5.3. The Case of Multiple Bodies: Local Mappings and Domain Decomposition

Let us finally give an example where several local mappings are used in order to allow
particle refinement near several obstacles. We consider the case of the flow past two cylin-
ders. Around each cylinder particles are remeshed on a polar grid with linear stretching
in the radial direction, along the same lines as in Subsection 5.1. These grids extend to 1
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FIG. 10. Successive stages of a vortex dipole impinging on a wall: T= 1.0, 2.0. Right column, uniform blobs,
fine grid; left column, variable blobs, coarse to fine grid ratio 2 fromy= 0 to y= 0.25. Particle locations are
indicated by dots (for clarity only one-fourth of the particles is shown).

cylinder radius. In between the cylinders, particles are regridded on a Cartesian uniform
mesh, with mesh size approximately corresponding to the mesh size of the polar grid in the
outer layer (see Fig. 13).

In these calculations we were only interested in the interaction of the wakes with the
bodies; Fig. 14 shows that the coupling techniques described in Subsection 4.3 do allow
a smooth transfer of vorticity between the sub-domains. Note that for calculations over

FIG. 11. Successive stages of a vortex dipole impinging on a wall: T= 4.0, 6.0. For description see Fig. 10.
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FIG. 12. Rebound of a vortex dipole impinging on a wall at T= 6.0. Bottom, uniform blobs, coarse grid; top,
variable blobs, coarse to fine grid ratio 2 fromy= 0 to y= 0.25; right column, uniform blobs, coarse grid.

FIG. 13. Flow around two asymmetrically placed cylinders. Grids used for regridding the particles.
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FIG. 14. Flow around two asymmetric cylinders. Successive stages of the vorticity contours.

longer times, with wakes extending far behind the second cylinder, it would be natural and
straightforward to implement a third mapping allowing lower resolution down-stream.

6. CONCLUSIONS

In this paper we have presented a new methodology that aims at enhancing the adaptive
character of vortex methods. The governing equations for the evolution of vortex particles
have been derived for particles of varying blob size. We have also presented the formulation
for extending this methodology to flows around multiple bodies.
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The results presented herein demonstrate the applicability of this method and the savings
that can be obtained in computations using variable size vortex methods. We believe that
in the present formulation vortex methods offer an interesting alternative to grid based
methodologies. The adaptivity and the Lagrangian character of vortex methods is retained
while it is complemented by capabilities such as mesh-embedding.

Present research is aimed at combining effectively in three dimensions grid based and
particle methods for different parts of the domain. Variable size vortex methods are a key
aspect of this approach.
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